Blogarchiv
Astronomie - Fluktuationen in extragalaktischen Gammastrahlen zeigen zwei Arten von Quellen, aber keine dunkle Materie

.

Forscher des Max-Planck-Instituts für Astrophysik und der Universität Amsterdam am GRAPPA Center of Excellence veröffentlichten vor kurzem die bislang genaueste Analyse der Fluktuationen im Gammastrahlen-Hintergrund. Sie verwendeten mehr als sechs Jahre an Daten, die vom Fermi Large Area Telescope gesammelt wurden, und fanden zwei unterschiedliche Arten von Quellen, die zum Gammastrahlenhintergrund beitragen. Die Analyse zeigte keine Hinweise auf einen Beitrag von möglichen Dunkle-Materie-Teilchen. Die Studie wurde im Rahmen einer internationalen Kooperation durchgeführt und in der Zeitschrift Physical Review D veröffentlicht.

Gammastrahlen sind Lichtteilchen (oder Photonen) mit der höchsten Energie im Universum; sie sind für das menschliche Auge unsichtbar. Die häufigsten Quellen für Gammastrahlen sind Blazare: supermassereiche Schwarze Löcher in den Zentren von Galaxien. In geringerem Ausmaß werden Gamma-Strahlen auch von besonderen Sternen wie Pulsaren oder in riesigen Sternexplosionen wie Supernovae erzeugt.

zoom-14
Diese Ansicht zeigt den gesamten Himmel in Gammastrahlung bei Energien größer als 1 GeV, auf der Grundlage von fünf Jahren an Daten mit dem Large Area Telescope auf dem Fermi Gammastrahlen-Observatorium der NASA. Hellere Farben zeigen stärkere Gammastrahlenemission. Das große helle Band in der Mitte ist die Emission unserer eigenen Galaxie.

Im Jahr 2008 startete die NASA den Fermi-Satelliten, um den Gammastrahlenhimmel mit extrem hoher Genauigkeit abzubilden. Sein Hauptinstrument, das Large Area Telescope, nimmt seither Daten auf. Alle drei Stunden, scannt es kontinuierlich den gesamten Himmel ab. Der Großteil der detektierten Gamma-Strahlen wird in unserer eigenen Galaxie (der Milchstraße) erzeugt, daneben konnte das Fermi-Teleskop aber auch mehr als 3000 extragalaktische Quellen nachweisen (Stand Januar 2016). Diese individuellen Quellen reichen allerdings nicht aus, um die Gesamtmenge der Gamma-Photonen zu erklären, die von außerhalb unserer Galaxie stammen. So können etwa 75% der Strahlung nicht erklärt werden.

Isotroper Gammastrahlen-Hintergrund

Schon seit den späten 1960er Jahren fanden Weltraumobservatorien einen diffusen Hintergrund an Gammastrahlen, der uns aus allen Richtungen des Universums erreicht. Könnten Sie mit „Gamma-Augen“ sehen, so gäbe es keinen Ort, an dem der Himmel dunkel wäre.  

Die Quelle dieses sogenannten isotropen Gamma-Hintergrundes ist bisher unbekannt. Er könnte durch nicht aufgelöste Blazare oder andere astronomische Quellen erzeugt werden, die zu schwach sind, um mit dem Fermi-Teleskop nachgewiesen zu werden. Teile des Gammastrahlenhintergrunds könnten auch den Fingerabdruck des postulierten „Dunkle-Materie-Teilchens“ enthalten. Dieses Teilchen wurde bisher noch nicht entdeckt, wurde aber theoretisch vorgeschlagen, um die fehlenden 80% der Materie in unserem Universum zu erklären. Wenn zwei Teilchen der dunklen Materie zusammenstoßen, können sie sich gegenseitig vernichten und eine Signatur von Gammastrahlen-Photonen erzeugen.

zoom-1-4 

Fluktuationen im isotropen Gammastrahlen-Hintergrund, basierend auf 81 Monaten an Daten. Die Emission unserer eigenen Galaxie, die Milchstraße, ist grau maskiert.

 

Fluktuationen 

"Die Analyse und Interpretation von Fluktuationen des diffusen Gammastrahlenhintergrunds ist ein neues Forschungsgebiet in der Hochenergie-Astrophysik", erklärt Eiichiro Komatsu am Max-Planck-Institut für Astrophysik, der die notwendigen Analysewerkzeuge für Fluktuationen dieser Strahlung entwickelt hat. Komatsu war auch Teil des Teams, das im Jahr 2012 erstmals Schwankungen im Gamma-Ray-Hintergrund nachweisen konnte. Für die neue Analyse nutzten die Forscher 81 Monate an Daten aus dem Fermi Large Area Telescope – ein viel größerer Datensatz und mit einer breiteren Energieskala als in früheren Studien.

Die Wissenschaftler konnten zwei unterschiedliche Beiträge zum Gammastrahlenhintergrund unterscheiden. Eine Klasse von Gammastrahlenquellen wird benötigt, um die Schwankungen bei niedrigen Energien (unter 1 GeV) zu erklären, und eine andere Art von Quellen wird benötigt, um die Fluktuationen mit höherer Energie zu erzeugen - die Signaturen dieser beiden Beiträge sind deutlich unterschiedlich.

Die Gammastrahlen in den Hochenergiebereichen – oberhalb von einigen GeV – stammen demnach von nicht aufgelösten Blazaren. Eine weitere Untersuchung dieser potenziellen Quellen ist derzeit im Gange. Allerdings scheint es viel schwieriger, eine Quelle für die Fluktuationen mit Energien unter 1 GeV zu lokalisieren. Keiner der bekannten Gammastrahlenemitter hat ein Verhalten, das mit den neuen Daten konsistent ist.

Einschränkungen für die dunkle Materie

Bisher konnte das Fermi-Teleskop keinen schlüssigen Hinweis auf Gammastrahlen-Emission von Teilchen der Dunklen Materie finden. Auch diese neue Studie zeigt keine Anzeichen für ein Signal, das mit dunkler Materie verknüpft sein könnte. "Unsere Messung ergänzt frühere Kampagnen, die mit Gammastrahlen nach dunkler Materie suchten", sagt Erstautor Mattia Fornasa von der Universität Amsterdam. "Sie bestätigt, dass wenig Raum bleibt für eine durch dunkle Materie induzierte Gammastrahlenemission im isotropen Gammastrahlenhintergrund."

Die Präzision der Fluktuationsmessung hat sich seit dem ersten Ergebnis im Jahr 2012 deutlich verbessert. "Ich freue mich, dass unsere Messungen wichtige Erkenntnisse über den Ursprung des Gammastrahlenhintergrundes liefern", so Komatsu.

"Meine ursprüngliche Motivation im Jahr 2006 diese Analyse durchzuführen bestand darin, Beweise für Gammastrahlen aus dunklen Materieteilchen zu finden. Nun, wir haben noch keine Gammastrahlen aus dunkler Materie gefunden", kommentiert Komatsu," aber es ist aufregend, dass unsere Messungen zu einem neuen Verständnis der Populationen von astrophysikalischen Quellen für Gammastrahlen - wie Blazaren - führen. Ich habe die Hoffnung noch nicht aufgegeben, die Gammastrahlungssignatur dunkler Materie zu finden, und wir haben einige neue Ideen, wie wir unsere Methode verbessern können."

Quelle: Max Planck Institut München

3425 Views
Raumfahrt+Astronomie-Blog von CENAP 0