Blogarchiv
Astronomie - NASA Missions Catch First Light from a Gravitational-Wave Event

17.10.2017

 

This animation captures phenomena observed over the course of nine days following the neutron star merger known as GW170817. They include gravitational waves (pale arcs), a near-light-speed jet that produced gamma rays (magenta), expanding debris from a kilonova that produced ultraviolet (violet), optical and infrared (blue-white to red) emission, and, once the jet directed toward us expanded into our view from Earth, X-rays (blue).
Credits: NASA's Goddard Space Flight Center/CI Lab

For the first time, NASA scientists have detected light tied to a gravitational-wave event, thanks to two merging neutron stars in the galaxy NGC 4993, located about 130 million light-years from Earth in the constellation Hydra.

 

Shortly after 8:41 a.m. EDT on Aug. 17, NASA's Fermi Gamma-ray Space Telescope picked up a pulse of high-energy light from a powerful explosion, which was immediately reported to astronomers around the globe as a short gamma-ray burst. The scientists at the National Science Foundation’s Laser Interferometer Gravitational-wave Observatory (LIGO) detected gravitational waves dubbed GW170817 from a pair of smashing stars tied to the gamma-ray burst, encouraging astronomers to look for the aftermath of the explosion. Shortly thereafter, the burst was detected as part of a follow-up analysis by ESA’s (European Space Agency’s) INTEGRAL satellite.

 

Swift’s Ultraviolet/Optical Telescope imaged the kilonova produced by merging neutron stars in the galaxy NGC 4993 (box) on Aug.
Swift’s Ultraviolet/Optical Telescope imaged the kilonova produced by merging neutron stars in the galaxy NGC 4993 (box) on Aug. 18, 2017, about 15 hours after gravitational waves and the gamma-ray burst were detected. The source was unexpectedly bright in ultraviolet light. It faded rapidly and was undetectable in UV when Swift looked again on Aug. 29. This false-color composite combines images taken through three ultraviolet filters. Inset: Magnified views of the galaxy.
Credits: NASA/Swift

NASA's Swift, Hubble, Chandra and Spitzer missions, along with dozens of ground-based observatories, including the NASA-funded Pan-STARRS survey, later captured the fading glow of the blast's expanding debris.

 

"This is extremely exciting science," said Paul Hertz, director of NASA’s Astrophysics Division at the agency’s headquarters in Washington. "Now, for the first time, we've seen light and gravitational waves produced by the same event. The detection of a gravitational-wave source’s light has revealed details of the event that cannot be determined from gravitational waves alone. The multiplier effect of study with many observatories is incredible."

 

Neutron stars are the crushed, leftover cores of massive stars that previously exploded as supernovas long ago. The merging stars likely had masses between 10 and 60 percent greater than that of our Sun, but they were no wider than Washington, D.C. The pair whirled around each other hundreds of times a second, producing gravitational waves at the same frequency. As they drew closer and orbited faster, the stars eventually broke apart and merged, producing both a gamma-ray burst and a rarely seen flare-up called a "kilonova."

 

"This is the one we've all been waiting for," said David Reitze, executive director of the LIGO Laboratory at Caltech in Pasadena, California. "Neutron star mergers produce a wide variety of light because the objects form a maelstrom of hot debris when they collide. Merging black holes -- the types of events LIGO and its European counterpart, Virgo, have previously seen -- very likely consume any matter around them long before they crash, so we don't expect the same kind of light show."

 

"The favored explanation for short gamma-ray bursts is that they're caused by a jet of debris moving near the speed of light produced in the merger of neutron stars or a neutron star and a black hole," said Eric Burns, a member of Fermi's Gamma-ray Burst Monitor team at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "LIGO tells us there was a merger of compact objects, and Fermi tells us there was a short gamma-ray burst. Together, we know that what we observed was the merging of two neutron stars, dramatically confirming the relationship."

 

Within hours of the initial Fermi detection, LIGO and the Virgo detector at the European Gravitational Observatory near Pisa, Italy, greatly refined the event's position in the sky with additional analysis of gravitational wave data. Ground-based observatories then quickly located a new optical and infrared source -- the kilonova -- in NGC 4993.  

 

To Fermi, this appeared to be a typical short gamma-ray burst, but it occurred less than one-tenth as far away as any other short burst with a known distance, making it among the faintest known. Astronomers are still trying to figure out why this burst is so odd, and how this event relates to the more luminous gamma-ray bursts seen at much greater distances.

 

NASA’s Swift, Hubble and Spitzer missions followed the evolution of the kilonova to better understand the composition of this slower-moving material, while Chandra searched for X-rays associated with the remains of the ultra-fast jet.

 

When Swift turned to the galaxy shortly after Fermi’s gamma-ray burst detection, it found a bright and quickly fading ultraviolet (UV) source.

 

"We did not expect a kilonova to produce bright UV emission," said Goddard’s S. Bradley Cenko, principal investigator for Swift. "We think this was produced by the short-lived disk of debris that powered the gamma-ray burst."

 

Over time, material hurled out by the jet slows and widens as it sweeps up and heats interstellar material, producing so-called afterglow emission that includes X-rays. 

But the spacecraft saw no X-rays -- a surprise for an event that produced higher-energy gamma rays.

 

NASA’s Chandra X-ray Observatory clearly detected X-rays nine days after the source was discovered. Scientists think the delay was a result of our viewing angle, and it took time for the jet directed toward Earth to expand into our line of sight.

 

kilonova associated with GW170817 (box) was observed by NASA's Hubble Space Telescope and Chandra X-ray Observatory
The kilonova associated with GW170817 (box) was observed by NASA's Hubble Space Telescope and Chandra X-ray Observatory. Hubble detected optical and infrared light from the hot expanding debris. The merging neutron stars produced gravitational waves and launched jets that produced a gamma-ray burst. Nine days later, Chandra detected the X-ray afterglow emitted by the jet directed toward Earth after it had spread into our line of sight.
Credits: NASA/CXC/E. Troja

"The detection of X-rays demonstrates that neutron star mergers can form powerful jets streaming out at near light speed," said Goddard's Eleonora Troja, who led one of the Chandra teams and found the X-ray emission. "We had to wait for nine days to detect it because we viewed it from the side, unlike anything we had seen before."

 

On Aug. 22, NASA’s Hubble Space Telescope began imaging the kilonova and capturing its near-infrared spectrum, which revealed the motion and chemical composition of the expanding debris.

 

Laser Interferometer Gravitational-wave Observatory detected gravitational waves from a neutron star collision
On August 17, 2017, the Laser Interferometer Gravitational-wave Observatory detected gravitational waves from a neutron star collision. Within 12 hours, observatories had identified the source of the event within the galaxy NGC 4993, shown in this Hubble Space Telescope image, and located an associated stellar flare called a kilonova (box). Inset: Hubble observed the kilonova fade over the course of six days.
Credits: NASA and ESA

"The spectrum looked exactly like how theoretical physicists had predicted the outcome of the merger of two neutron stars would appear," said Andrew Levan at the University of Warwick in Coventry, England, who led one of the proposals for Hubble spectral observations. "It tied this object to the gravitational wave source beyond all reasonable doubt."

 

Astronomers think a kilonova's visible and infrared light primarily arises through heating from the decay of radioactive elements formed in the neutron-rich debris. Crashing neutron stars may be the universe's dominant source for many of the heaviest elements, including platinum and gold.

 

Because of its Earth-trailing orbit, Spitzer was uniquely situated to observe the kilonova long after the Sun moved too close to the galaxy for other telescopes to see it. Spitzer's Sept. 30 observation captured the longest-wavelength infrared light from the kilonova, which unveils the quantity of heavy elements forged.

 

"Spitzer was the last to join the party, but it will have the final word on how much gold was forged," says Mansi Kasliwal, Caltech assistant professor and principal investigator of the Spitzer observing program. 

 

Numerous scientific papers describing and interpreting these observations have been published in Science, Nature, Physical Review Letters and The Astrophysical Journal.

 

Gravitational waves were directly detected for the first time in 2015 by LIGO, whose architects were awarded the 2017 Nobel Prize in physics for the discovery.

+++

NASA’s Hubble Studies Source of Gravitational Waves

On Aug. 17, 2017, weak ripples in the fabric of space-time known as gravitational waves washed over Earth. Unlike previously detected gravitational waves, these were accompanied by light, allowing astronomers to pinpoint the source. NASA’s Hubble Space Telescope turned its powerful gaze onto the new beacon, obtaining both images and spectra. The resulting data will help reveal details of the titanic collision that created the gravitational waves, and its aftermath.

Hubble observations of neutron star collision in NGC 4993
On Aug. 17, 2017, the Laser Interferometer Gravitational-Wave Observatory detected gravitational waves from a neutron star collision. Within 12 hours, observatories had identified the source of the event within the galaxy NGC 4993, shown in this Hubble Space Telescope image, and located an associated stellar flare called a kilonova. Hubble observed that flare of light fade over the course of 6 days, as shown in these observations taken on August 22, 26, and 28 (insets).
Credits: NASA, ESA; acknowledgment: A. Levan (U. Warwick), N. Tanvir (U. Leicester), and A. Fruchter and O. Fox (STScI)

 

The Laser Interferometer Gravitational-Wave Observatory (LIGO) detected gravitational waves at 8:41 a.m. EDT on Aug. 17. Two seconds later, NASA’s Fermi Gamma-ray Space Telescope measured a short pulse of gamma rays known as a gamma-ray burst. Many observatories, including space telescopes, probed the suspected location of the source, and within about 12 hours several spotted their quarry.

 

Laser Interferometer Gravitational-wave Observatory detected gravitational waves from a neutron star collision
On Aug. 17, 2017, the Laser Interferometer Gravitational-wave Observatory detected gravitational waves from a neutron star collision. Within 12 hours, observatories had identified the source of the event within the galaxy NGC 4993, shown in this Hubble Space Telescope image, and located an associated stellar flare called a kilonova (box). Inset: Hubble observed the kilonova fade over the course of six days.
Credits: NASA and ESA

In a distant galaxy called NGC 4993, about 130 million light-years from Earth, a point of light shone where nothing had been before. It was about a thousand times brighter than a variety of stellar flare called a nova, putting it in a class of objects astronomers call “kilonovae.” It also faded noticeably over six days of Hubble observations.

 

“This appears to be the trifecta for which the astronomical community has been waiting: Gravitational waves, a gamma-ray burst and a kilonova all happening together,” said Ori Fox, of the Space Telescope Science Institute in Baltimore.

 

The source of all three was the collision of two neutron stars, the aged remains of a binary star system. A neutron star forms when the core of a dying massive star collapses, a process so violent that it crushes protons and electrons together to form subatomic particles called neutrons. The result is like a giant atomic nucleus, cramming several Suns' worth of material into a ball just a few miles across.

 

In NGC 4993, two neutron stars once spiraled around each other at blinding speed. As they drew closer together, they whirled even faster, spinning as fast as a blender near the end. Powerful tidal forces ripped off huge chunks while the remainder collided and merged, forming a larger neutron star or perhaps a black hole. Leftovers spewed out into space. Freed from the crushing pressure, neutrons turned back into protons and electrons, forming a variety of chemical elements heavier than iron.

 

“We think neutron star collisions are a source of all kinds of heavy elements, from the gold in our jewelry to the plutonium that powers spacecraft, power plants and bombs,” said Andy Fruchter, of the Space Telescope Science Institute.

 

Several teams of scientists are using Hubble's suite of cameras and spectrographs to study the gravitational wave source. Fruchter, Fox and their colleagues used Hubble to obtain a spectrum of the object in infrared light. By splitting the light of the source into a rainbow spectrum, astronomers can probe the chemical elements that are present. The spectrum showed several broad bumps and wiggles that signal the formation of some of the heaviest elements in nature.

 

“The spectrum looked exactly like how theoretical physicists had predicted the outcome of the merger of two neutron stars would appear. It tied this object to the gravitational wave source beyond all reasonable doubt,” said Andrew Levan of the University of Warwick in Coventry, England, who led one of the proposals for Hubble spectral observations. Additional spectral observations were led by NialTanvir of the University of Leicester, England.

 

Spectral lines can be used as fingerprints to identify individual elements. However, this spectrum is proving a challenge to interpret.

 

“Beyond the fact that two neutron stars flung a lot of matter out into space, we’re not yet sure what else the spectrum is telling us,” explained Fruchter. “Because the material is moving so fast, the spectral lines are smeared out. Also, there are all kinds of unusual isotopes, many of which are short-lived and undergo radioactive decay. The good news is that it’s an exquisite spectrum, so we have a lot of data to work with and analyze.”

 

Hubble also picked up visible light from the event that gradually faded over the course of several days. Astronomers believe that this light came from a powerful “wind” of material speeding outward. These observations hint that astronomers viewed the collision from above the orbital plane of the neutron stars. If seen from the side (along the orbital plane), matter ejected during the merger would have obscured the visible light and only infrared light would be visible.

 

“What we see from a kilonova might depend on our viewing angle. The same type of event would appear different depending on whether we’re looking at it face-on or edge-on, which came as a total surprise to us,” said Eleonora Troja of the University of Maryland, College Park, and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Troja is also a principal investigator of a team using Hubble observations to study the object.

 

The gravitational wave source now is too close to the Sun on the sky for Hubble and other observatories to study. It will come back into view in November. Until then, astronomers will be working diligently to learn all they can about this unique event.

 

The launch of NASA’s James Webb Space Telescope also will offer an opportunity to examine the infrared light from the source, should that glow remain detectable in the months and years to come.

 

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA’s Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy Inc., in Washington, D.C.

+++

 

 

 

3017 Views
Raumfahrt+Astronomie-Blog von CENAP 0