Blogarchiv
Astronomie - Startschuss für eine neue Ära der Präzisionsastronomie Die MICADO-Kamera am E-ELT tritt in die Designphase ein

.

Die MICADO-Kamera wird von einem Konsortium europäischer Institute in Zusammenarbeit mit der ESO entwickelt und gebaut. MICADO wird die erste bildgebende Kamera an dem neuen, riesigen Teleskop E-ELT sein und eine neue Ära astronomischer Präzisionsmessungen einläuten. Dieses Zeichnung zeigt, wie das Instrument am Teleskop installiert werden wird.

.

Für die MICADO-Kamera, das Instrument mit dem das European Extremely Large Telescope (E-ELT) seine ersten Bilder machen wird, beginnt eine neue Phase: In einer gemeinsamen Absichtserklärung (Memorandum of Understanding) auf der „Kick-off“-Konferenz in Wien bestätigten die Partner in Deutschland, Frankreich, den Niederlanden, Österreich und Italien ihre Teilnahme am Projekt. Zwei Wochen zuvor, am 18. September, hatten das Konsortium und die Europäische Südsternwarte (ESO), die das Teleskop baut, den entsprechenden Kooperationsvertrag unterzeichnet. Nach diesen Meilensteinen tritt das Projekt nun in die Designphase ein. Als erste, dedizierte Kamera für das E-ELT wird MICADO beugungsbegrenzte Abbildungen bei Nah-Infrarot-Wellenlängen (Wärmestrahlung) mit dem Riesenteleskop erlauben.

MICADO, die „Multi-AO Imaging Camera for Deep Observations“, wurde für das European Extremely Large Telescope (E-ELT), ein Teleskop mit 39 Metern Spiegeldurchmesser, konzipiert. Dieses revolutionäre Teleskop wird das größte optische bzw. Nah-Infrarot-Teleskop der Welt sein und etwa 15 Mal mehr Licht sammeln als die heute existierenden größten optischen Teleskope. Die MICADO-Kamera wird beugungsbegrenzte Abbildungen bei Nah-Infrarot-Wellenlängen ermöglichen und eine neue Ära astronomischer Präzisionsmessungen einläuten. Um die Verzerrungen durch die turbulente Atmosphäre der Erde zu korrigieren, wird MICADO für die Nutzung von adaptiver Optik (AO) optimiert: einem einfachen AO-Modus (SCAO), um einzelne Zielobjekte korrigieren zu können, und einem leistungsfähigeren Modus, um auch bei Beobachtungen über ein großes Sichtfeld scharfe Bilder zu erhalten. Dies wird durch das Instrument MAORY ermöglicht werden.

Das Leistungsvermögen von MICADO wird genau auf die einzigartigen Eigenschaften des neuen Teleskops abgestimmt, um Entdeckungen und Untersuchungen  neuer oder unbekannter astrophysikalischer Phänomene zu erlauben. Um nur einige Beispiele zu nennen:
Die hohe Empfindlichkeit wird es ermöglichen, schwächste Sterne und die am weitesten entfernten Galaxien nachzuweisen. Seine beispiellose räumliche Auflösung wird Strukturen und Details in Nebeln und Galaxien aufzeigen, die weit über das hinausgehen, was derzeit möglich ist. So kann zum Beispiel durch die Auflösung einzelner Sterne in entfernten Galaxien deren Sternentstehungsgeschichte und -entwicklung untersucht werden. Und mit der hervorragenden astrometrischen Präzision von MICADO werden viele astronomische Objekte nicht mehr wie bisher statisch erscheinen, sondern ihre wahre Dynamik preisgeben. Die Messungen der winzigen Bewegungen von Sternen in Sternhaufen werden schwarze Löcher verraten, die sich in diesen Haufen verbergen; verfolgt man die Bewegungen der Sternhaufen, so erhält man neue Erkenntnisse darüber, wie sich unsere Milchstraße gebildet hat. Darüber hinaus wird MICADO auch einen speziellen Beobachtungsmodus enthalten, mit dem extrasolare Planeten direkt nachgewiesen und untersucht werden können, sowie einen anderen Modus um Spektren von kompakten Objekten aufzuzeichnen.
"Wir sehen einer wirklich aufregenden Zukunft entgegen: die großartigen Messungen, die wir mit unserer Kamera an diesem Riesenteleskop machen können, werden uns spannende neue Erkenntnisse liefern", sagt Ric Davies, Wissenschaftler am MPE und MICADO-Projektleiter. "Aber das Projekt stellt auch extreme Herausforderungen an alle Beteiligten, und ich bin froh, ein solch kompetentes und enthusiastisches Team zu haben."
Das MICADO-Instrument wird von einem Konsortium aus europäischen Instituten in Zusammenarbeit mit der ESO entwickelt und gebaut. Alle Partner können auf eine lange Tradition zurückblicken, in der sie gemeinsam optische und Infrarot-Instrumentierung der Weltklasse entworfen und gebaut haben. Das Projekt wird voraussichtlich fast 10 Jahre dauern, vom Beginn der aktuellen Designphase bis zur endgültigen Inbetriebnahme; die erste Beobachtung (das „first light“) für E-ELT und MICADO ist für 2024 geplant.
Als federführendes Institut ist das MPE für das gesamte Projektmanagement und die Systementwicklung verantwortlich und repräsentiert das Konsortium gegenüber der ESO. Darüber hinaus übernimmt das Team am MPE die Führung bei der Entwicklung und dem Bau des MICADO-Kryostaten und der „kalten“ Optik. Als Instrument für Infrarot-Wellenlängen muss die gesamte MICADO-Kamera mit flüssigem Stickstoff auf eine Temperatur von etwa -196° Celsius gekühlt werden – sonst würde es nur sich selbst "sehen". Dies bedeutet, dass auch die Optik im Inneren des Kryostaten, also die Spiegel und Linsen, die das Licht vom Teleskop zu den eigentlichen Detektoren leiten, in dieser kalten Umgebung arbeiten muss, was ganz besondere Herausforderungen an Material und Positionierung stellt.
ESO unterstützt die Entwicklung der MICADO-Kamera als assoziiertes Mitglied des Konsortiums und ist verantwortlich für zwei wichtige Bereiche: die Entwickung und Beschaffung der wissenschaftlichen Detektorsysteme und das Design des Kamerasystems für die adaptive Optik (Wellenfrontsensor und Kameras für die Leitsterne) mit dem dazugehörigen Computersystem, das in Echtzeit arbeiten muss. Beide Aufgaben werden von ESO für alle E-ELT-Instrumente übernommen. Daneben ist die ESO auch für die Schnittstelle zwischen der MICADO-Kamera und dem adaptiven Optik-Instument MAORY verantwortlich.
-
Kick-off for a new era of precision astronomy
Start of the Preliminary Design Phase for the MICADO camera for the E-ELT
.
The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement. As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared wavelengths.MICADO is the Multi-AO Imaging Camera for Deep Observations, which has been designed to work on the 39-m European Extremely Large Telescope (E-ELT). This revolutionary telescope will be the largest optical/near-infrared telescope in the world, gathering about 15 times more light than the largest optical telescopes existing today. The MICADO camera will provide the capability for diffraction-limited imaging at near-infrared wavelengths, taking the power of adaptive optics to the next level. To correct for distortions due to the Earth’s atmosphere, MICADO is optimized to make use of adaptive optics (AO): a simple single conjugate AO mode (SCAO) for correction of individual targets and a powerful multi-conjugate AO mode provided by the MAORY (Multi-conjugate Adaptive Optics RelaY) instrument to obtain sharp images over a wide-field of view.The key capabilities of MICADO are matched to the unique features of the new telescope, and will lead to dramatic discoveries of new or unexplored astrophysical phenomena. To name but a few: Its high sensitivity will allow it to detect the faintest stars and furthest galaxies. Its unprecedented spatial resolution will reveal structures in nebulae and galaxies in detail far beyond what is currently possible. For instance, by resolving stellar populations in distant galaxies their star formation history and evolution can be studied. And with the superb astrometric precision achieved by MICADO, many astronomical objects will no longer be static – they will become dynamic. Measuring the tiny movements of stars will reveal the presence of otherwise hidden black holes in star clusters, and tracking the motions of star clusters will lead to new insights about how our Milky Way formed. In addition, MICADO includes a special mode that will allow it to directly observe and characterize extrasolar planets, and another that enables it to take spectra of compact objects.
“It’s an incredibly exciting prospect, the measurements we’ll be able to make with our camera and this giant future telescope,” says Ric Davies, the Principal Investigator at MPE. “But this is also a very challenging project, and I am glad to have such a capable and enthusiastic team.” 
The MICADO instrument will be developed and built by a consortium of European institutes in collaboration with ESO. All partners have a strong tradition of working together to design and build world-class optical and infrared instrumentation. The project is expected to last nearly 10 years from the beginning of the current design phase to the end of commissioning, with the first light of both the E-ELT and MICADO planned for 2024.
As the lead institute, MPE is responsible for the overall project management and system engineering, and represents the consortium towards ESO. In addition, the team at MPE takes the lead in the developing and constructing the MICADO cryostat and the cold optics. As an instrument for infrared wavelengths, the whole MICADO camera has to be cooled with liquid nitrogen to a temperature of about -196° Celsius – otherwise it would only “see” itself. This means that also the optics inside the cryostat, i.e. the mirrors and lenses guiding the light from the telescope to the actual detectors has to work in this cold environment, posing challenges on both material and positioning.
ESO supports the development of the MICADO instrument as an associate consortium member. It is responsible for two key areas: development and procurement of the science detector systems and the design of the adaptive optics wave front sensing and guide camera system with its associated real-time computer. Both activities are carried by ESO for all E-ELT instrumentation projects. In addition ESO is responsible for and manages the crucial interface between the MICADO science instrument and the multi-conjugate adaptive optics instrument MAORY.
Quelle: Max-Planck-Institut für extraterrestrische Physik (Germany)

 

4712 Views
Raumfahrt+Astronomie-Blog von CENAP 0