Blogarchiv
Astronomie - NASA JamesWebb Telescope - Update-25

28.12.2021

More Than You Wanted to Know About Webb’s Mid-Course Corrections!

On Dec. 25, the Webb team successfully executed the first of three planned orbit corrections to get Webb into its halo orbit around the second Lagrange point, L2. To hear more about these important maneuvers, here is Randy Kimble, the Webb Integration, Test, and Commissioning Project Scientist, at NASA Goddard:

In sending the Webb Observatory into its orbit around the Sun-Earth L2 point, the vast majority of the energy required was provided by the Ariane 5 rocket. After release of the observatory from the rocket, several small tweaks to the trajectory are planned, to ease the observatory into its operating orbit about one month after launch.

l2-orbit-picture1-768x433

Webb’s orbit is around L2—a point of gravitational balance on the other side of Earth from the Sun—but it does not reside exactly at the L2 point. Right at that point, Earth’s shadowing of the Sun would be large enough to greatly reduce the amount of power available for Webb’s solar arrays, without greatly simplifying the cooling challenges. In addition, when Webb’s communication antennas point at Earth to receive commands, they would be blinded by the huge radio emission of the Sun in the same direction. Instead, as the diagram indicates, Webb operates in a very loose orbit (many hundreds of thousands of km in diameter) around L2, in constant sunlight and with clean communications with the ground stations. Credit:  NASA

The largest and most important mid-course correction (MCC), designated MCC-1a, has already been successfully executed as planned, beginning 12.5 hours after launch. This time was chosen because the earlier the course correction is made, the less propellant it requires. This leaves as much remaining fuel as possible for Webb’s ordinary operations over its lifetime: station-keeping (small adjustments to keep Webb in its desired orbit) and momentum unloading (to counteract the effects of solar radiation pressure on the huge sunshield).

The burn wasn’t scheduled immediately after launch to give time for the flight dynamics team to receive tracking data from three ground stations, widely separated over the surface of the Earth, thus providing high accuracy for their determination of Webb’s position and velocity, necessary to determine the precise parameters for the correction burn. Ground stations in Malindi Kenya, Canberra Australia, and Madrid Spain provided the necessary ranging data.  There was also time to do a test firing of the required thruster before executing the actual burn. We are currently doing the analysis to determine just how much more correction of Webb’s trajectory will be needed, and how much fuel will be left, but we already know that the Ariane 5’s placement of Webb was better than requirements.

One interesting aspect of the Webb launch and the Mid-Course Corrections is that we always “aim a little bit low.” The L2 point and Webb’s loose orbit around it are only semi-stable. In the radial direction (along the Sun-Earth line), there is an equilibrium point where in principle it would take no thrust to remain in position; however, that point is not stable. If Webb drifted a little bit toward Earth, it would continue (in the absence of corrective thrust) to drift ever closer; if it drifted a little bit away from Earth, it would continue to drift farther away. Webb has thrusters only on the warm, Sun-facing side of the observatory. We would not want the hot thrusters to contaminate the cold side of the observatory with unwanted heat or with rocket exhaust that could condense on the cold optics. This means the thrusters can only push Webb away from the Sun, not back toward the Sun (and Earth). We thus design the launch insertion and the MCCs to always keep us on the uphill side of the gravitational potential,  we never want to go over the crest – and drift away downhill on the other side, with no ability to come back.

Therefore, the Ariane 5 launch insertion was intentionally designed to leave some velocity in the anti-Sun direction to be provided by the payload. MCC-1a similarly was executed to take out most, but not all, of the total required correction (to be surethat this burn also would not overshoot). In the same way, MCC-1b, scheduled for 2.5 days after launch, and MCC-2, scheduled for about 29 days after launch (but neither time-critical), and the station-keeping burns throughout the mission lifetime will always thrust just enough to leave us a little bit shy of the crest. We want Sisyphus to keep rolling this rock up the gentle slope near the top of the hill – we never want it to roll over the crest and get away from him. The Webb team’s job, guided by the Flight Dynamics Facility at NASA Goddard, is to make sure it doesn’t.

-Randy Kimble, JWST Integration, Test, and Commissioning Project Scientist, NASA Goddard Space Flight Center

 

Webb Antenna Released and Tested

 

Shortly after 10 am EST on Dec. 26, the Webb team began the process of releasing the gimbaled antenna assembly, or GAA, which includes Webb’s high-data-rate dish antenna. This antenna will be used to send at least 28.6 Gbytes of science data down from the observatory, twice a day. The team has now released and tested the motion of the antenna assembly — the entire process took about one hour.

Separately, overnight, the temperature sensors and strain gauges on the telescope were activated for the first time. Temperature and strain data are now available to engineers monitoring Webb’s thermal and structural systems.

 

The First Mid-Course Correction Burn 

 
Visualization of James Webb Space Telescope initiating thrusters for a course correction burn.
At 7:50 pm EST, on Dec. 25, 2021, the James Webb Space Telescope initiated its first course correction burn to adjust its trajectory toward its final orbit. Credit: NASA Goddard Space Flight Center

At 7:50 pm EST, Webb’s first mid-course correction burn began. It lasted 65 minutes and is now complete. This burn is one of two milestones that are time critical — the first was the solar array deployment, which happened shortly after launch. 

This burn adjusts Webb’s trajectory toward the second Lagrange point, commonly known as L2. After launch, Webb needs to make its own mid-course thrust correction maneuvers to get to its orbit. This is by design: Webb received an intentional slight under-burn from the Ariane-5 that launched it into space, because it’s not possible to correct for overthrust. If Webb gets too much thrust, it can’t turn around to move back toward Earth because that would directly expose its telescope optics and structure to the Sun, overheating them and aborting the science mission before it can even begin.  

Therefore, we ease up to the correct velocity in three stages, being careful never to deliver too much thrust — there will be three mid-course correction maneuvers in total. 

After this burn, no key milestones are time critical, so the order, location, timing, and duration of deployments may change.

You can track where Webb is in the process and read about upcoming deployments.  NASA has a detailed plan to deploy the Webb Space Telescope over a roughly two-week period.The deployment process is not an automatic hands-off sequence; it is human-controlled. The team monitors Webb in real-time and may pause the nominal deployment at any time. This means that the deployments may not occur exactly in the order or at the times originally planned.

 

What it felt like at Mission Ops Control when we launched JWST

 

The James Webb Space Telescope is on its way!  The mission launched on an Ariane 5 rocket at 7:20 a.m. EST  on Saturday, Dec. 25.

Jane Rigby, the operations project scientist for Webb at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, told us what it was like to be supporting the launch from the Mission Operations Center at the Space Telescope Science Institute in Baltimore:

Launch day. It’s 7:00am, and I’m at the Mission Operations Center, “the MOC” — mission control to regular folks, for the launch of JWST. I’m wearing a mission patch polo and a headset. We launch in twenty minutes. The mood here is nervous, excited, and ready. I hear laughter in the hallways and see grim eyes over KN95 masks. We know that the future of NASA science is at stake. We know how audaciously hard the task will be. We know how many times we rehearsed. Now we do it for real.

Here was my Thanksgiving script:
Family: “Where will you be for launch?”
Me: “Baltimore!”
Friends: “It’s launching from Baltimore?”
Me: “No, we’re launching from French Guiana. Mission Control is in Baltimore.”

Jane Rigby sits in front of her computers while supporting the launch of Webb.
Jane Rigby, the operations project scientist for Webb at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, is seen sitting in the Mission Operations Center at the Space Telescope Science Institute in Baltimore during the launch of the James Webb Space Telescope.

So much must go right the first day. JWST must deploy its solar array to get power. No solar array, no mission.

LAUNCH. I can hear some shrieking from the VIPs downstairs, but it’s quiet here. We’re waiting to take control of JWST when it separates from the rocket about 30 minutes after launch.

The second stage shuts down and the launch vehicle separates. The call comes out that the attitude control system is working. The solar array should be deploying automatically…. There’s a tense wait… and then the call “Sun is on the array, current is on the array!” Suddenly it’s DEAFENINGLY loud on the voice loops, with clapping and shouts of happiness echoing through the MOC. I look up to see the video feed from the launch vehicle and THERE IT IS, our beautiful observatory with its solar panel all the way out, shining in the sun.

Things keep getting better. We acquire our first ground station, Malindi in Kenya, and the MOC sends our first command to JWST, accompanied by shouts and cheering. The reaction wheels are powered up and take over. We hear “Wheel Sun!” and I write it in all caps in my log. The call comes over the voice loop: “JWST is flying on its own.”

I glance down at the photos I brought for luck: my wife and my kid in front of JWST under construction; and my hero Frank Kameny in his youth, peering through a telescope. I close my eyes and give silent thanks for the entire team. Every piece of this huge, gorgeous observatory was ingeniously designed, custom made, mostly by hand, and torture-chamber tested and re-tested. So many hands cradled this bird. So many brains dreamed up science observations. So many worked so hard —  now we see if it works.

Quelle: NASA

789 Views
Raumfahrt+Astronomie-Blog von CENAP 0