At the center of a galaxy, a giant black hole powers a jet of ionized gas.
LYNETTE COOK/SOFIA/NASA
-
How did giant black holes grow so big? Astronomers have long had evidence of baby black holes with masses of no more than tens of suns, and of million– or billion–solar-mass behemoths lurking at the centers of galaxies. But middle-size ones, with thousands or tens of thousands of solar masses, seemed to be missing. Their absence forced theorists to propose that supermassive black holes didn’t grow gradually by slowly consuming matter, but somehow emerged as ready-made giants.
Now, astronomers appear to have located some missing middleweights. An international team has scoured an archive of galaxy spectra and found more than 300 small galaxies that have the signature of intermediate mass black holes (IMBHs) in their cores. They confirmed that 10 of those candidates really do have middleweight black holes by consulting other data sets, raising their confidence that the original list “must include at least a few dozen genuine [IMBHs],” says team leader Igor Chilingarian of the Smithsonian Astrophysical Observatory in Cambridge, Massachusetts.
Ezequiel Treister of the Pontifical Catholic University of Chile in Santiago, who was not involved in the study, salutes the team’s detective work. “Black hole measurements are really hard; we’ve been trying to do this for many years.” Volker Bromm of the University of Texas in Austin says the team’s technique is “pretty original” and calls their work “careful and responsible.” The findings, researchers say, could begin to unravel the mystery of supermassive black hole formation.
Black holes of any size are hard to find because they don’t emit light of their own. They can reveal themselves by sucking in nearby gas and dust, heating it so fiercely along the way that it emits x-rays. X-rays pouring from the centers of many galaxies betray the presence of supermassive black holes, known as active galactic nuclei (AGNs). But the x-ray signal of an IMBH would be faint, and existing x-ray satellites are geared toward detailed observations of distant sources, not wide-ranging surveys of multiple galaxies. The archive from NASA’s Chandra X-ray Observatory, for example, only covers 2.5% of the sky.
So Chilingarian’s team searched for an alternative, visible-light signal in a catalog of 930,000 galaxy spectra gathered by the Sloan Digital Sky Survey (SDSS). The x-rays produced by an AGN ionize clouds of hydrogen gas in the galactic bulge around it, setting them aglow at particular frequencies that produce distinct peaks in the galaxy’s spectrum. The clouds closest to the black hole swirl around it at high speed, which shifts the frequencies via the Doppler effect and smears out each spectral peak. Gas clouds farther out move more slowly, so the peaks remain sharp. To identify galaxies that have a small AGN, the team looked for spectral peaks that were sharp at the top but smeared out around the base.