Blogarchiv
Astronomie - Exiled Asteroid Discovered in Outer Reaches of Solar System

10.05.2018

eso1814a

This artist’s impression shows the exiled asteroid 2004 EW95, the first carbon-rich asteroid confirmed to exist in the Kuiper Belt and a relic of the primordial Solar System. This curious object likely formed in the asteroid belt between Mars and Jupiter and must have been transported billions of kilometres from its origin to its current home in the Kuiper Belt.

-

An international team of astronomers has used ESO telescopes to investigate a relic of the primordial Solar System. The team found that the unusual Kuiper Belt Object 2004 EW95 is a carbon-rich asteroid, the first of its kind to be confirmed in the cold outer reaches of the Solar System. This curious object likely formed in the asteroid belt between Mars and Jupiter and has been flung billions of kilometres from its origin to its current home in the Kuiper Belt.

The early days of our Solar System were a tempestuous time. Theoretical models of this period predict that after the gas giants formed they rampaged through the Solar System, ejecting small rocky bodies from the inner Solar System to far-flung orbits at great distances from the Sun [1]. In particular, these models suggest that the Kuiper Belt — a cold region beyond the orbit of Neptune — should contain a small fraction of rocky bodies from the inner Solar System, such as carbon-rich asteroids, referred to as carbonaceous asteroids [2].

Now, a recent paper has presented evidence for the first reliably-observed carbonaceous asteroid in the Kuiper Belt, providing strong support for these theoretical models of our Solar System’s troubled youth. After painstaking measurements from multiple instruments at ESO’s Very Large Telescope (VLT), a small team of astronomers led by Tom Seccull of Queen’s University Belfast in the UK was able to measure the composition of the anomalous Kuiper Belt Object 2004 EW95, and thus determine that it is a carbonaceous asteroid. This suggests that it originally formed in the inner Solar System and must have since migrated outwards [3].

The peculiar nature of 2004 EW95 first came to light during routine observations with the NASA/ESA Hubble Space Telescope by Wesley Fraser, an astronomer from Queen’s University Belfast who was also a member of the team behind this discovery. The asteroid’s reflectance spectrum — the specific pattern of wavelengths of light reflected from an object — was different to that of similar small Kuiper Belt Objects (KBOs), which typically have uninteresting, featureless spectra that reveal little information about their composition.

The reflectance spectrum of 2004 EW95 was clearly distinct from the other observed outer Solar System objects,” explains lead author Seccull. “It looked enough of a weirdo for us to take a closer look.

The team observed 2004 EW95 with the X-Shooter and FORS2 instruments on the VLT. The sensitivity of these spectrographs allowed the team to obtain more detailed measurements of the pattern of light reflected from the asteroid and thus infer its composition.

However, even with the impressive light-collecting power of the VLT, 2004 EW95 was still difficult to observe. Though the object is 300 kilometres across, it is currently a colossal four billion kilometres from Earth, making gathering data from its dark, carbon-rich surface a demanding scientific challenge.

It’s like observing a giant mountain of coal against the pitch-black canvas of the night sky,” says co-author Thomas Puzia from the Pontificia Universidad Católica de Chile.

Not only is 2004 EW95 moving, it’s also very faint,” adds Seccull. “We had to use a pretty advanced data processing technique to get as much out of the data as possible.

Two features of the object’s spectra were particularly eye-catching and corresponded to the presence of ferric oxides and phyllosilicates. The presence of these materials had never before been confirmed in a KBO, and they strongly suggest that 2004 EW95 formed in the inner Solar System.

Seccull concludes: “Given 2004 EW95’s  present-day abode in the icy outer reaches of the Solar System, this implies that it has been flung out into its present orbit by a migratory planet in the early days of the Solar System.”

While there have been previous reports of other ‘atypical’ Kuiper Belt Object spectra, none were confirmed to this level of quality,” comments Olivier Hainaut, an ESO astronomer who was not part of the team. “The discovery of a carbonaceous asteroid in the Kuiper Belt is a key verification of one of the fundamental predictions of dynamical models of the early Solar System.

 

An international team of astronomers has used ESO telescopes to investigate a relic of the primordial Solar System. The team found that the unusual Kuiper Belt Object 2004 EW95 is a carbon-rich asteroid, the first of its kind to be confirmed in the cold outer reaches of the Solar System.

The red line in this animation shows the orbit of 2004 EW95, with the orbits of other Solar System bodies shown in green for comparison.

Notes

[1] Current dynamical models of the evolution of the early Solar System, such as the grand tack hypothesis and the Nice model, predict that the giant planets migrated first inward and then outward, disrupting and scattering objects from the inner Solar System. As a consequence, a small percentage of rocky asteroids are expected to have been ejected into orbits in the Oort Cloud and Kuiper belt.

[2] Carbonaceous asteroids are those containing the element carbon or its various compounds. Carbonaceous — or C-type — asteroids can be identified by their dark surfaces, caused by the presence of carbon molecules.

[3] Other inner Solar System objects have previously been detected in the outer reaches of the Solar System, but this is the first carbonaceous asteroid to be found far from home in the Kuiper Belt.

+++

Vertriebener Asteroid in den Außenbereichen unseres Sonnensystems entdeckt

ESO-Teleskope finden ersten bestätigten kohlenstoffreichen Asteroiden im Kuipergürtel

Ein internationales Astronomenteam hat mit ESO-Teleskopen ein Relikt aus der Frühzeit des Sonnensystems untersucht: Die Wissenschaftler fanden heraus, dass das ungewöhnliche Objekt 2004 EW95 aus dem sogenannten Kuipergürtel ein kohlenstoffreicher Asteroid ist und damit der erste seiner Art, der in den kalten Außenbereichen unseres Sonnensystems bestätigt werden konnte. Dieses merkwürdige Objekt ist wahrscheinlich im Asteroidengürtel zwischen Mars und Jupiter entstanden und wurde Milliarden von Kilometer von seinem Ursprungsort bis zu seiner jetzigen Heimat im Kuipergürtel geschleudert.

Die Anfänge unseres Sonnensystems waren eine stürmische Zeit. Theoretische Berechnungen der damals ablaufenden Prozesse haben ergeben, dass die großen Gasplaneten nach ihrer Entstehung das Sonnensystem dominiert und kleine gesteinshaltige Körper aus dem inneren Sonnensystem in weit entfernte Umlaufbahnen geschleudert haben [1]. Solche Modellrechnungen legen insbesondere nahe, dass der Kuipergürtel – eine kalte Region jenseits der Umlaufbahn des Neptuns - einen kleinen Anteil an Gesteinsbrocken aus dem inneren Sonnensystem enthalten sollte, zum Beispiel kohlenstoffreiche Asteroiden, die als auch als Asteroiden vom C-Typ bezeichnet werden [2].

Jetzt hat ein kürzlich erschienener Fachartikel Hinweise auf den ersten eindeutig beobachteten kohlenstoffhaltigen Asteroiden im Kuiper-Gürtel vorgelegt, der diese theoretischen Modelle der problematischen frühen Jahre unseres Sonnensystems stark unterstützt. Nach sorgfältigen Messungen mit mehreren Instrumenten am Very Large Telescope (VLT) der ESO konnte ein kleines Team von Astronomen unter der Leitung von Tom Seccull von der Queen's University Belfast in Großbritannien die Zusammensetzung des anomalen Kuipergürtel-Objekts 2004 EW95 messen und so feststellen, dass es sich um einen kohlenstoffhaltigen Asteroiden handelt. Dies deutet darauf hin, dass es sich ursprünglich im inneren Sonnensystem gebildet hat und anschließend nach außen gewandert sein muss [3].

Die Besonderheit von 2004 EW95 zeigte sich erstmals bei Routinebeobachtungen mit dem NASA/ESA Hubble Space Telescope, die Wesley Fraser durchgeführt hat, ein Astronomen der Queen's University Belfast, der auch Mitglied des Teams hinter dieser Entdeckung ist. Das Reflexionsspektrum des Asteroiden – das spezifische Muster der Wellenlängen des von einem Objekt reflektierten Lichts – unterschied sich von dem ähnlicher kleiner Kuipergürtel-Objekte (engl. Kuiper Belt Objects, kurz KBOs), die typischerweise uninteressante, strukturlose Spektren aufweisen, die wenig Informationen über ihre Zusammensetzung preisgeben.

"Das Reflexionsspektrum von 2004 EW95 unterschied sich deutlich von den anderen beobachteten Objekten des äußeren Sonnensystems", erklärt Erstautor Seccull. "Es sah so seltsam aus, dass wir es uns unbedingt genauer ansehen mussten."

Das Team beobachtete 2004 EW95 mit den Instrumenten X-Shooter und FORS2 am VLT. Die Empfindlichkeit dieser Spektrografen erlaubte es dem Team, das vom Asteroiden reflektierte Licht genauer zu vermessen und so auf seine chemische Zusammensetzung zu schließen.

Doch auch mit der beeindruckenden Lichtsammelleistung des VLT war 2004 EW95 noch schwer zu beobachten. Obwohl das Objekt etwa 300 Kilometer groß ist, befindet es sich derzeit stattliche 4 Milliarden Kilometer von der Erde entfernt, was das Sammeln von Daten von seiner dunklen, kohlenstoffreichen Oberfläche zu einer anspruchsvollen wissenschaftlichen Herausforderung macht.

"Es ist, als würde man einen riesigen Kohleberg gegen die pechschwarze Leinwand des Nachthimmels beobachten", erläutert Koautor Thomas Puzia von der Pontificia Universidad Católica de Chile.

"2004 EW95 bewegt sich nicht nur, er ist auch sehr lichtschwach", fügt Seccull hinzu. "Wir mussten eine ziemlich ausgefeilte Verarbeitungstechnik anwenden, um so viel wie möglich aus den Daten herauszuholen." Zwei Merkmale in den Spektren des Objekts waren besonders auffällig und entsprachen dem Vorhandensein von Eisenoxiden und Phyllosilikaten. Das Vorhandensein dieser Materialien war noch nie zuvor in einem KBO bestätigt worden und legt nahe, dass sich 2004 EW95 im inneren Sonnensystem gebildet hat.

Seccull schließt: "Angesichts der heutigen Lage von 2004 EW95 in den eisigen Außenbereichen des Sonnensystems bedeutet dies, dass er in der Fürhzeit des Sonnensystems von einem migrierenden Planeten in seine gegenwärtige Umlaufbahn geschleudert wurde".

"Es gab zwar bereits Spektren anderer "atypischer" Kuipergürtel-Objekte, aber keine konnten in dieser Qualität bestätigt werden", kommentiert Olivier Hainaut, ein ESO-Astronom, der nicht zum Team gehörte. "Die Entdeckung eines kohlenstoffhaltigen Asteroiden im Kuipergürtel ist ein wichtiger Nachweis für eine der grundlegenden Vorhersagen dynamischer Modelle des frühen Sonnensystems."

Endnoten

[1] Aktuelle dynamische Modelle der Evolution des frühen Sonnensystems, wie die sogenannte Grand-Tack-Hypothese, und das Modell von Nizza sagen voraus, dass die großen Gasriesen zuerst nach innen und dann nach außen gewandert sind und dabei Objekte aus dem inneren Sonnensystem gestört und verstreut haben. Infolgedessen geht man davon aus, dass ein kleiner Prozentsatz der gesteinshaltigen Asteroiden in Umlaufbahnen in der Oortschen Wolke und in den Kuipergürtel geschleudert wurde.

[2] Unter kohlenstoffhaltigen Asteroiden versteht man solche, die das Element Kohlenstoff oder verschiedene seiner Verbindungen enthalten. Asteroiden vom C-Typ können durch ihre dunkle Oberfläche, verursacht durch das Vorhandensein von Kohlenstoffmolekülen, identifiziert werden.

Quelle: ESO

 

2757 Views
Raumfahrt+Astronomie-Blog von CENAP 0