Blogarchiv
Astronomie - 15 Years in Space for NASAs Spitzer Space Telescope

24.08.2018

pia04267-hires

This image shows an artist's impression of the Spitzer Space Telescope. The background shows an infrared image from Spitzer of the plane of the Milky Way galaxy. Image credit: NASA/JPL

-

Initially scheduled for a minimum 2.5-year primary mission, NASA's Spitzer Space Telescope has gone far beyond its expected lifetime -- and is still going strong after 15 years.

Launched into a solar orbit on Aug. 25, 2003, Spitzer was the final of NASA's four Great Observatories to reach space. The space telescope has illuminated some of the oldest galaxies in the universe, revealed a new ring around Saturn, and peered through shrouds of dust to study newborn stars and black holes. Spitzer assisted in the discovery of planets beyond our solar system, including the detection of seven Earth-size planets orbiting the star TRAPPIST-1, among other accomplishments.

"In its 15 years of operations, Spitzer has opened our eyes to new ways of viewing the universe," said Paul Hertz, director of the Astrophysics Division at NASA Headquarters in Washington. "Spitzer's discoveries extend from our own planetary backyard, to planets around other stars, to the far reaches of the universe. And by working in collaboration with NASA's other Great Observatories, Spitzer has helped scientists gain a more complete picture of many cosmic phenomena."

A view into the past

Spitzer detects infrared light -- most often heat radiation emitted by warm objects. On Earth, infrared light is used in a variety of applications, including night-vision instruments.

With its infrared vision and high sensitivity, Spitzer has contributed to the study of some of the most distant galaxies in the known universe. The light from some of those galaxies traveled for 13.4 billion years to reach Earth. As a result, scientists see these galaxies as they were less than 400 million years after the birth of the universe.

Among this population of ancient galaxies was a surprise for scientists: "big baby" galaxies that were much larger and more mature than scientists thought early-forming galaxies could be. Large, modern galaxies are thought to have formed through the gradual merger of smaller galaxies. But the "big baby" galaxies showed that massive collections of stars came together very early in the universe's history.

Studies of these very distant galaxies relied on data from both Spitzer and the Hubble Space Telescope, another one of NASA's Great Observatories. Each of the four Great Observatories collects light in a different wavelength range. By combining their observations of various objects and regions, scientists can gain a more complete picture of the universe.

"The Great Observatories program was really a brilliant concept," said Michael Werner, Spitzer project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. "The idea of getting multispectral images or data on astrophysical phenomenon is very compelling, because most heavenly bodies produce radiation across the spectrum. An average galaxy like our own Milky Way, for example, radiates as much infrared light as visible wavelength light. Each part of the spectrum provides new information."

trappist-1

This artist's concept shows what the TRAPPIST-1 planetary system may look like, based on available data about the planets' diameters, masses and distances from the host star. The system has been revealed through observations from NASA's Spitzer Space Telescope and the ground-based TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope) telescope, as well as other ground-based observatories. The system was named for the TRAPPIST telescope.

The seven planets of TRAPPIST-1 are all Earth-sized and terrestrial, according to research published in 2017 in the journal Nature. TRAPPIST-1 is an ultra-cool dwarf star in the constellation Aquarius, and its planets orbit very close to it.

They are likely all tidally locked, meaning the same face of the planet is always pointed at the star, as the same side of our moon is always pointed at Earth. This creates a perpetual night side and perpetual day side on each planet.

TRAPPIST-1b and c receive the most light from the star and would be the warmest. TRAPPIST-1e, f and g all orbit in the habitable zone, the area where liquid water is most likely to be detected. But any of the planets could potentially harbor liquid water, depending on their compositions.

In the imagined planets shown here, TRAPPIST-1b is shown as a larger analogue to Jupiter's moon Io. TRAPPIST-1d is depicted with a narrow band of water near the terminator, the divide between a hot, dry day and an ice-covered night side. TRAPPIST-1e and TRAPPIST-1f are both shown covered in water, but with progressively larger ice caps on the night side. TRAPPIST-1g is portrayed with an atmosphere like Neptune's, although it is still a rocky world. TRAPPIST-1h, the farthest from the star, would be the coldest. It is portrayed here as an icy world, similar to Jupiter's moon Europa, but the least is known about it.

New worlds

In recent years, scientists have utilized Spitzer to study exoplanets, or planets orbiting stars other than our Sun, although this was not something the telescope's designers anticipated.

With Spitzer's help, researchers have studied planets with surfaces as hot as stars, others thought to be frozen solid, and many in between. Spitzer has studied some of the nearest known exoplanets to Earth, and some of the most distant exoplanets ever discovered.

Spitzer also played a key role in one of the most significant exoplanet discoveries in history: the detection of seven, roughly Earth-size planets orbiting a single star. The TRAPPIST-1 planetary system was unlike any alien solar system ever discovered, with three of its seven planets located in the "habitable zone," where the temperature might be right for liquid water to exist on the planets' surfaces. Their discovery was an enticing step in the search for life elsewhere in the universe.

"The study of extrasolar planets was still in its infancy when Spitzer launched, but in recent years, often more than half of Spitzer's observation time is used for studies of exoplanets or searches for exoplanets," said Lisa Storrie-Lombardi, Spitzer's project manager at JPL. "Spitzer is very good at characterizing exoplanets, even though it wasn't designed to do that."

Some other major discoveries made using the Spitzer space telescope include:

-- The largest known ring around Saturn, a wispy, fine structure with 300 times the diameter of Saturn.

-- First exoplanet weather map of temperature variations over the surface of a gas exoplanet. Results suggested the presence of fierce winds.

-- Asteroid and planetary smashups. Spitzer has found evidence for several rocky collisions in other solar systems, including one thought to involve two large asteroids.

-- Recipe for "comet soup." Spitzer observed the aftermath of the collision between NASA's Deep Impact spacecraft and comet Tempel 1, finding that cometary material in our own solar system resembles that around nearby stars.

-- The hidden lairs of newborn stars. Spitzer's infrared images have provided unprecedented views into the hidden cradles where young stars grow up, revolutionizing our understanding of stellar birth.

-- Buckyballs in space. Buckyballs are soccer-ball-shaped carbon molecules discovered in laboratory research with multiple technological applications on Earth..

-- Massive clusters of galaxies. Spitzer has identified many more distant galaxy clusters than were previously known.

-- One of the most extensive maps of the Milky Way galaxyever compiled, including the most accurate map of the large bar of stars in the galaxy's center, created using Spitzer data from the Galactic Legacy Mid-Plane Survey Extraordinaire project, or GLIMPSE.

An extended journey

Spitzer has logged over 106,000 hours of observation time. Thousands of scientists around the world have utilized Spitzer data in their studies, and Spitzer data is cited in more than 8,000 published papers.

Spitzer's primary mission ended up lasting 5.5 years, during which time the spacecraft operated in a "cold phase," with a supply of liquid helium cooling three onboard instruments to just above absolute zero. The cooling system reduced excess heat from the instruments themselves that could contaminate their observations. This gave Spitzer very high sensitivity for "cold" objects.

In July 2009, after Spitzer's helium supply ran out, the spacecraft entered a so-called "warm phase." Spitzer's main instrument, called the Infrared Array Camera (IRAC), has four cameras, two of which continue to operate in the warm phase with the same sensitivity they maintained during the cold phase.

Spitzer orbits the Sun in an Earth-trailing orbit (meaning it literally trails behind Earth as the planet orbits the Sun) and has continued to fall farther and farther behind Earth during its lifetime. This now poses a challenge for the spacecraft, because while it is downloading data to Earth, its solar panels do not directly face the Sun. As a result, Spitzer must use battery power during data downloads. The batteries are then recharged between downloads.

"Spitzer is farther away from Earth than we ever thought it would be while still operating," said Sean Carey, manager of the Spitzer Science Center at Caltech in Pasadena, California. "This has posed some real challenges to the engineering team, and they've been extremely creative and resourceful to keep Spitzer operating far beyond its expected lifetime."

In 2016, Spitzer entered an extended mission dubbed "Spitzer Beyond." The spacecraft is currently scheduled to continue operations into November 2019, more than 10 years after entering its warm phase.

In celebration of Spitzer's 15 years in space, NASA has released two new multimedia products: The NASA Selfies app for iOS and Android, and the Exoplanet Excursions VR Experience for Oculus and Vive, as well as a 360-video version for smartphones. Spitzer's incredible discoveries and amazing images are at the center of these new products.

JPL manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at Caltech in Pasadena, California. Spacecraft operations are based at Lockheed Martin Space Systems Company, Littleton, Colorado. Data are archived at the Infrared Science Archive housed at the IPAC at Caltech. Caltech manages JPL for NASA.

pia13782-hires

Astronomers have discovered a massive cluster of young galaxies forming in the distant universe. The growing galactic metropolis, named COSMOS-AzTEC3, is the most distant known massive "proto-cluster" of galaxies, lying about 12.6 billion light-years away from Earth. Members of the developing cluster are shown here, circled in white, in this image taken by Japan's Subaru telescope atop Mauna Kea in Hawaii. The cluster was discovered by a suite of multi-wavelength telescopes, including NASA's Spitzer, Chandra and Hubble space observatories, Subaru and the W.M. Keck Observatory, also atop Mauna Kea in Hawaii.

The other dots in this picture are stars or galaxies that are not members of the cluster -- most of the them are located closer to us than the cluster, but some are farther away. The two brightest spots are stars. Though they appear bright in this image, they are actually tens of thousands of times fainter than what we can see with our eyes.

pia10181-hires

Newborn stars peek out from beneath their natal blanket of dust in this dynamic image of the Rho Ophiuchi dark cloud from NASA's Spitzer Space Telescope. Called "Rho Oph" by astronomers, it's one of the closest star-forming regions to our own solar system. Located near the constellations Scorpius and Ophiuchus, the nebula is about 407 light years away from Earth.

Rho Oph is a complex made up of a large main cloud of molecular hydrogen, a key molecule allowing new stars to form from cold cosmic gas, with two long streamers trailing off in different directions. Recent studies using the latest X-ray and infrared observations reveal more than 300 young stellar objects within the large central cloud. Their median age is only 300,000 years, very young compared to some of the universe's oldest stars, which are more than 12 billion years old.

This false-color image of Rho Oph's main cloud, Lynds 1688, was created with data from Spitzer's infrared array camera, which has the highest spatial resolution of Spitzer's three imaging instruments, and its multiband imaging photometer, best for detecting cooler materials. Blue represents 3.6-micron light; green shows light of 8 microns; and red is 24-micron light. The multiple wavelengths reveal different aspects of the dust surrounding and between the embedded stars, yielding information about the stars and their birthplace.

The colors in this image reflect the relative temperatures and evolutionary states of the various stars. The youngest stars are surrounded by dusty disks of gas from which they, and their potential planetary systems, are forming. These young disk systems show up as red in this image. Some of these young stellar objects are surrounded by their own compact nebulae. More evolved stars, which have shed their natal material, are blue.

The extended white nebula in the center right of the image is a region of the cloud which is glowing in infrared light due to the heating of dust by bright young stars near the right edge of the cloud. Fainter multi-hued diffuse emission fills the image. The color of the nebulosity depends on the temperature, composition and size of the dust grains. Most of the stars forming now are concentrated in a filament of cold, dense gas that shows up as a dark cloud in the lower center and left side of the image against the bright background of the warm dust. Although infrared radiation at 24 microns pierces through dust easily, this dark filament is incredibly opaque, appearing dark even at the longest wavelengths in the image.

NASA's Jet Propulsion Laboratory, Pasadena, Calif., manages the Spitzer Space Telescope mission for NASA's Science Mission Directorate, Washington. Science operations are conducted at the Spitzer Science Center at the California Institute of Technology, also in Pasadena. Caltech manages JPL for NASA.

Spitzer's infrared array camera was built by NASA's Goddard Space Flight Center, Greenbelt, Md. The instrument's principal investigator is Giovanni Fazio of the Harvard-Smithsonian Center for Astrophysics.

Quelle: NASA

442 Views