Blogarchiv
Astronomie - Double Trouble: A White Dwarf Surprises Astronomers

9.12.2018

wdac-525

    • The fastest growing white dwarf may have been found using data from NASA's Chandra X-ray Observatory and other telescopes.

    • When stars like our Sun run out of nuclear fuel, they shrink and dim as they become a "white dwarf" star.

    • Some white dwarf stars have companion stars from which they can siphon off material due to their strong surface gravity.

  • A new study of ASASSN-16oh in the Small Magellanic Cloud offers a new explanation for "supersoft" X-rays detected from this white dwarf.

 

Astronomers have detected a bright X-ray outburst from a star in the Small Magellanic Cloud, a nearby galaxy almost 200,000 light years from Earth. A combination of X-ray and optical data indicate that the source of this radiation is a white dwarf star that may be the fastest-growing white dwarf ever observed.

In several billion years, our Sun will run out of most of its nuclear fuel and shrink down to a much smaller, fainter "white dwarf" star about the size of Earth. Because a mass equivalent to that of the Sun is packed into such a small volume, the gravity on the surface of a white dwarf is several hundred thousand times that of Earth.

Unlike our Sun, most stars including white dwarfs, do not exist in isolation, but instead are part of pairs called "binary systems." If the stars are close enough, the gravity of the white dwarf can pull matter away from its companion.

A new study based on observations with NASA's Chandra X-ray Observatory and Neil Gehrels Swift Observatory has reported the discovery of distinctive X-ray emission from a binary system containing a white dwarf called ASASSN-16oh. The discovery involves the detection of low-energy — what astronomers refer to as "soft" — X-rays, produced by gas at temperatures of several hundred thousand degrees. In contrast, higher-energy X-rays reveal phenomena at temperatures of tens of millions of degrees. The X-ray emission from ASASSN-16oh is much brighter than the soft X-rays produced by the atmospheres of normal stars, placing it in the special category of a supersoft X-ray source.

For years, astronomers have thought that supersoft X-ray emission from white dwarf stars is produced by nuclear fusion in a hot, dense layer of hydrogen and heliumnuclei. This volatile material accumulated from the infall of matter from the companion star onto the surface of the white dwarf, and led to a nuclear fusion explosion much like a hydrogen bomb.

However, ASASSN-16oh shows there is more to the story. This binary was first discovered by the All-Sky Automated Survey for Supernovae (ASASSN), a collection of about 20 optical telescopes distributed around the globe to automatically survey the entire sky every night for supernovas and other transient events. Astronomers then used Chandra and Swift to detect the supersoft X-ray emission.

"In the past, the supersoft sources have all been associated with nuclear fusion on the surface of white dwarfs," said lead author Tom Maccarone, a professor in the Texas Tech Department of Physics & Astronomy who led the new paper that appears in the December 3rd issue of Nature Astronomy.

If nuclear fusion is the cause of the supersoft X-rays from ASASSN-16oh then it should begin with an explosion and the emission should come from the entire surface of the white dwarf. However, the optical light does not increase quickly enough to be caused by an explosion and the Chandra data show that the emission is coming from a region smaller than the surface of the white dwarf. The source is also a hundred times fainter in optical light than white dwarfs known to be undergoing fusion on their surface. These observations, plus the lack of evidence for gas flowing away from the white dwarf, provide strong arguments against fusion having taken place on the white dwarf.

Because none of the signs of nuclear fusion are present, the authors present a different scenario. As with the fusion explanation the white dwarf is pulling gas away from a companion star, a red giant. In a process called accretion, the gas is pulled onto a large disk surrounding the white dwarf and becomes hotter as it spirals toward the white dwarf, as shown in our illustration. The gas then falls onto the white dwarf, producing X-rays along a belt where the disk meets the star. The rate of inflow of matter through the disk varies by a large amount. When the material starts flowing more quickly, the X-ray brightness of the system becomes much higher.

"The transfer of mass is happening at a higher rate than in any system we've caught in the past," added Maccarone.

If the white dwarf keeps gaining mass it may reach a mass limit and destroy itself in a Type Ia supernova explosion, a type of event used to discover that the expansion of the universe is accelerating. The team's analysis suggests that the white dwarf is already unusually massive so ASASSN-16oh may be relatively close — in astronomical terms — to exploding as a supernova.

"Our result contradicts a decades-long consensus about how supersoft X-ray emission from white dwarfs is produced," said co-author Thomas Nelson from the University of Pittsburgh. "We now know that the X-ray emission can be made in two different ways: by nuclear fusion or by the accretion of matter from a companion."

Also involved in the study were scientists from Texas A&M University, NASA Goddard Space Flight Center, University of Southampton, University of the Free State in the Republic of South Africa, the South African Astronomical Observatory, Michigan State University, State University of New Jersey, Warsaw University Observatory, Ohio State University and the University of Warwick.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra's science and flight operations.

+++

R Aquarii: Watching a Volatile Stellar Relationship

raqr-w11

    • R Aquarii is a system containing a white dwarf and a “Mira” variable red giant in orbit around each other.

    • Over the 17 years of Chandra’s operations, the telescope has observed the R Aquarii system many times.

    • This new composite contains optical data (red) and X-ray data from Chandra (blue).

  • Chandra data helps astronomers better understand how this volatile stellar pair interacts with one another.

 

In biology, "symbiosis" refers to two organisms that live close to and interact with one another. Astronomers have long studied a class of stars — called symbiotic stars — that co-exist in a similar way. Using data from NASA’s Chandra X-ray Observatoryand other telescopes, astronomers are gaining a better understanding of how volatile this close stellar relationship can be.

R Aquarii (R Aqr, for short) is one of the best known of the symbiotic stars. Located at a distance of about 710 light years from Earth, its changes in brightness were first noticed with the naked eye almost a thousand years ago. Since then, astronomers have studied this object and determined that R Aqr is not one star, but two: a small, dense white dwarf and a cool red, giant star.

The red giant star has its own interesting properties. In billions of years, our Sun will turn into a red giant once it exhausts the hydrogen nuclear fuel in its core and begins to expand and cool. Most red giants are placid and calm, but some pulsate with periods between 80 and 1,000 days like the star Mira and undergo large changes in brightness. This subset of red giants is called "Mira variables."

The red giant in R Aqr is a Mira variable and undergoes steady changes in brightness by a factor of 250 as it pulsates, unlike its white dwarf companion that does not pulsate. There are other striking differences between the two stars. The white dwarf is about ten thousand times fainter than the red giant. The white dwarf has a surface temperature of some 20,000 K while the Mira variable has a temperature of about 3,000 K. In addition, the white dwarf is slightly less massive than its companion but because it is much more compact, its gravitational field is stronger. The gravitational force of the white dwarf pulls away the sloughing outer layers of the Mira variable toward the white dwarf and onto its surface.

Occasionally, enough material will accumulate on the surface of the white dwarf to trigger thermonuclear fusion of hydrogen. The release of energy from this process can produce a nova, an asymmetric explosion that blows off the outer layers of the star at velocities of ten million miles per hour or more, pumping energy and material into space. An outer ring of material provides clues to this history of eruptions. Scientists think a nova explosion in the year 1073 produced this ring. Evidence for this explosion comes from optical telescope data, from Korean records of a “guest” star at the position of R Aqr in 1073 and information from Antarctic ice cores. An inner ring was generated by an eruption in the early 1770s. Optical data (red) in a new composite image of R Aqr shows the inner ring. The outer ring is about twice as wide as the inner ring, but is too faint to be visible in this image.

Since shortly after Chandra launched in 1999, astronomers began using the X-ray telescope to monitor the behavior of R Aqr, giving them a better understanding of the behavior of R Aqr in more recent years. Chandra data (blue) in this composite reveal a jet of X-ray emission that extends to the upper left. The X-rays have likely been generated by shock waves, similar to sonic booms around supersonic planes, caused by the jet striking surrounding material.

As astronomers have made observations of R Aqr with Chandra over the years, in 2000, 2003, and 2005, they have seen changes in this jet. Specifically, blobs of X-ray emission are moving away from the stellar pair at speeds of about 1.4 million and 1.9 million miles per hour. Despite travelling at a slower speed than the material ejected by the nova, the jets encounter little material and do not slow down much. On the other hand, matter from the nova sweeps up a lot more material and slows down significantly, explaining why the rings are not much larger than the jets.

Time-lapse of R Aqr

Time-lapse of R Aqr

Using the distances of the blobs from the binary, and assuming that the speeds have remained constant, a team of scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, estimated that eruptions in the 1950s and 1980s produced the blobs. These eruptions were less energetic and not as bright as the nova explosion in 1073.

In 2007 a team led by Joy Nichols from CfA reported the possible detection of a new jet in R Aqr using the Chandra data. This implies that another eruption occurred in the early 2000s. If these less powerful and poorly understood events repeat about every few decades, the next one is due within the next 10 years.

Some binary star systems containing white dwarfs have been observed to produce nova explosions at regular intervals. If R Aqr is one of these recurrent novas, and the spacing between the 1073 and 1773 events repeats itself, the next nova explosion should not occur again until the 2470s. During such an event the system may become several hundred times brighter, making it easily visible to the naked eye, and placing it among the several dozen brightest stars.

Close monitoring of this stellar couple will be important for trying to understand the nature of their volatile relationship.

Rodolfo ("Rudy") Montez of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, presented these results at the 230th meeting of the American Astronomical Society in Austin, TX. His co-authors are Margarita Karovska, Joy Nichols, and Vinay Kashyap, all from CfA.

NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.

Quelle: NASA

 

3518 Views
Raumfahrt+Astronomie-Blog von CENAP 0