Blogarchiv
Astronomie - Magnetic coil springs accelerate particles on the Sun

14.01.2018

Why does the Sun sometimes accelerate preferentially helium-3 and iron into space? Researchers have for the first time observed helical solar flares as a source.  

-

In April and July 2014, the Sun emitted three jets of energetic particles into space, that were quite exceptional: the particle flows contained such high amounts of iron and helium-3, a rare variety of helium, as have been observed only few times before. Since these extraordinary events occurred on the backside of our star, they were not discovered immediately. A group of researchers headed by the Max Planck Institute for Solar System Research (MPS) and the Institute for Astrophysics of the University of Göttingen (Germany) present a comprehensive analysis now in the Astrophysical Journal. It is based on data from the twin space probes STEREO A and STEREO B, which – at that time still both operating – were in a favorable observation position behind the Sun at the crucial time. For the first time, the study shows a correlation between helium-3 and iron-rich particle flows and helical eruptions of ultraviolet radiation in the Sun's atmosphere. These could provide the necessary energy to accelerate the particles into space.
standard-full-6
This images show the measurements performed by the SECCHI/EUVI-instrument onboard STEREO from 29 April 2014. The image on the left was taken ten minutes prior to the one on the right. The emissions of extreme ultraviolet light (at a wavelength of 304 Å) clearly show a helical motion of the plasma flows.                                                                                               
-

Sudden particle emissions, in which our star repeatedly hurls large amounts of charged and uncharged particles into space, are still a mystery. Some of these particle flows are accompanied by violent solar flares, a sudden and local increase of the Sun’s brightness, and contain up to 10,000 times more helium-3 and up to 10 times more iron than the Sun's atmosphere. Why is this extremely rare helium isotope accelerated into space so efficiently? And why iron? How does the Sun supply these particles with the necessary energy to catapult them into space?

"The events, that took place on the backside of the Sun in April and July 2014, were particularly intense and allowed for unusually extensive insights”, says Dr. Radoslav Bučík from the MPS. Only seldomly does the Sun emit particle flows so heavily enriched in helium-3 and heavier elements into space – and often they do not originate from the “right” place. Most space probes studying the Sun do so from an observational position close to Earth. They therefore see only the side of the Sun facing the Earth. Only the spacecraft STEREO A and B, which have been orbiting our star from opposite sides since 2006, began to observe the Sun’s far side in 2011.

The flare from 29 April, 2014 as seen by the instrument SECCHI/EUVI on board STEREO at a wavelength of 171 Å.Zoom Image
The flare from 29 April, 2014 as seen by the instrument SECCHI/EUVI on board STEREO at a wavelength of 171 Å.

Shortly before the control center lost contact to STEREO B in October 2014, both probes witnessed the "hidden" particle eruptions on 30 April 2014 and 17 and 20 July 2014. The eruptions lasted up to three days each. "The amount of helium-3 and iron in them was increased as much as in just a handful of other known events," Bučík describes the measurements.

While the ion telescope SIT (Suprathermal Ion Telescope) on board the STEREO probes recorded the composition of the particle streams, the EUVI instruments (Extreme Ultraviolet Imager), parts of STEREO’s instrument package SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation), looked at their regions of origin in the atmosphere of the Sun. There, the scientists found the typical increase of extreme ultraviolet radiation, which is usually accompanied by particle events of this kind, but this time in an unfamiliar form: helical movements were clearly recognizable.

"This is the first time that we have seen a twisted radiation outburst as the source of helium-3 and iron-rich particle flows," says Bučík. The radiation is caused by hot plasma moving along the constantly swirling and changing magnetic field lines in the Sun's atmosphere. When these field lines regroup, there may be a sudden release of energy. "The helical magnetic fields seem to efficiently provide helium-3 and iron in the solar atmosphere with energy - much like a spring coil that is suddenly released," said Bučík.

"Only by further exploring this mechanism can we better understand other solar outbursts," says Dr. Nariaki Nitta of the Lockheed Martin Advanced Technology Center in Palo Alto, USA. The researchers’ focus is particularly on a further variety of particle events, so-called coronal mass ejections (CMEs). The energy of these particles is very high. They can lead to solar storms on Earth, which endanger, for example, satellites. In rare cases, these ejections are also very rich in iron - and then particularly dangerous because of the particles’ high mass. The researchers now want to investigate whether these iron-rich particles outbursts, too, are accelerated by helical radiation bursts.

This research project was funded by the Deutsche Forschungsgemeinschaft (DFG) and the Max Planck Society (MPG).

----

Schraubenförmige Magnetfelder beschleunigen Sonnenteilchen

Warum spuckt die Sonne manchmal bevorzugt Helium-3 und Eisen ins All? Forscher beobachten erstmals schraubenförmig verdrillte Strahlungsausbrüche als Ursache.

-

Im April und Juli 2014 schleuderte die Sonne drei Fontänen ins All, die es in sich hatten: Die Teilchenströme enthielten so hohe Mengen an Eisen und Helium-3, einer seltenen Spielart des Edelgases, wie sie bisher nur selten beobachtet wurden. Da sich das außergewöhnliche Feuerwerk auf der Rückseite unseres Sterns ereignete, wurde es nicht sofort entdeckt. Eine Auswertung legen Forscher unter Leitung des Max-Planck-Instituts für Sonnensystemforschung (MPS) und des Instituts für Astrophysik der Georg-August-Universität Göttingen jetzt im Fachjournal The Astrophysical Journal vor. Sie basiert auf Daten der Zwillingssonden STEREO A und STEREO B, die sich – damals noch beide in Betrieb – zum entscheidenden Zeitpunkt in günstiger Beobachtungsposition hinter der Sonne befanden. Die Studie belegt erstmals einen Zusammenhang zwischen helium-3- und eisenreichen Teilchenströmen und schraubenförmig verdrillten Ausbrüchen ultravioletter Strahlung in der Atmosphäre der Sonne. Diese könnten die nötige Energie liefern, die Teilchen ins All zu beschleunigen.

Teilchenausbrüche, in denen unser Stern immer wieder explosionsartig eine große Menge geladener und ungeladener Teilchen ins All schleudert, sind noch immer ein Rätsel. Einige dieser Teilchenströme gehen mit heftigen Strahlungsausbrüchen, so genannten Flares, einher und enthalten bis zu 10000-mal mehr Helium-3 und bis zu zehnmal mehr Eisen als die Atmosphäre der Sonne. Warum wird gerade diese ausgesprochen seltene Helium-Variante so effizient ins All beschleunigt? Und warum Eisen? Auf welchem Wege versorgt die Sonne diese Teilchen mit der nötigen Energie, um sie bevorzugt ins All zu katapultieren?

„Die Ereignisse, die sich im April und Juli 2014 auf der Rückseite der Sonne abspielten, waren besonders intensiv und haben uns ungewohnt umfassende Einsichten ermöglicht“, so Dr. Radoslav Bučík vom MPS. Teilchenströme, die so stark angereichert sind mit Helium-3 und schwereren Elementen, treten auf der Sonne nur selten auf – und dann nicht immer an der „richtigen“ Stelle. Die meisten Raumsonden, die die Sonne untersuchen, tun dies in der Nähe der Erde. Ihr Blick gilt deshalb der uns zugewandten Vorderseite der Sonne. Nur die Sonden STEREO A und B, die seit 2006 unseren Stern von entgegengesetzten Seiten umrunden, beobachten seit 2011 auch den uns abgewandten Teil unseres Sterns.

Kurz bevor im Oktober 2014 der Kontakt der Bodenstation STEREO B abriss, wurden beide Sonden Zeuge der „versteckten“ Teilchenausbrüche vom 30. April 2014 sowie vom 17. und 20. Juli 2014. Die Ausbrüche dauerten jeweils bis zu drei Tagen an. „Die Menge an Helium-3 und Eisen war in ihnen so stark erhöht wie in nur einer Handvoll anderer bekannter Ereignisse“, beschreibt Bučík die Messergebnisse.

Während das Ionenteleskope SIT (Suprathermal Ion Telescope) an Bord der STEREO-Sonden die Zusammensetzung der Teilchenströme aufzeichnete, blickten die EUVI-Instrumente (Extreme Ultraviolet Imager), Teile des Instrumentenpakets SECCHI (Sun Earth Connection Coronal and Heliospheric Investigation), auf ihre Ursprungsregionen in der Atmosphäre Sonne. Dort zeigte sich den Wissenschaftlern zwar der typische Anstieg energiereicher, ultravioletter Strahlung, der meist mit Teilchenausbrüchen dieser Art einhergeht, aber in ungewohnter Form: Deutlich ließen sich schraubenartige Bewegungen erkennen.

„Dies ist das erste Mal, dass wir einen solch verdrillten Strahlungsausbruch als Ursprung der helium-3- und eisenreichen Teilchenströme beobachten“, so Bučík. Die Strahlung geht in der Regel von heißem Plasma aus, das sich entlang der ständig wabernden und verändernden magnetischen Feldlinien in der Atmosphäre der Sonne bewegt. Wenn sich diese Feldlinien neu formieren kann es zu einem plötzlichen Freisetzen von Energie kommen. „Die verdrillten Magnetfelder scheinen besonders die Helium-3 und Eisen-Teilchen in der Sonnenatmosphäre effizient mit Energie zu versorgen – ganz ähnlich wie eine gespannte Sprungfeder, die plötzlich losgelassen wird“, so Bučík.

„Nur wenn wir diesen Mechanismus weiter untersuchen, können wir auch andere Ausbrüche unseres Sterns besser verstehen“, so Dr. Nariaki Nitta vom Lockheed Martin Advanced Technology Center in Palo Alto (USA). Dabei richtet sich das Augenmerk der Forscher besonders auf eine weitere Sorte von Teilchenausbrüchen, die so genannten koronalen Masseausbrüche. Die Energie der Teilchen, welche die Sonne bei diesen Ereignissen ins All schleudert, ist sehr hoch. Sie können auf der Erde zu Sonnenstürmen führen, die beispielsweise Satelliten gefährden. In seltenen Fällen, sind auch diese Ausbrüche sehr eisenreich – und dann wegen der Schwere der Teilchen besonders gefährlich. Die Forscher wollen nun der Frage nachgehen, ob diese Eisenteilchen ebenfalls durch schraubenartige Strahlungsausbrüche beschleunigt werden.

Dieses Forschungsprojekt wurde von der Deutschen Forschungsgemeinschaft (DFG) und der Max-Planck-Gesellschaft (MPG) gefördert.

Quelle:  MAX-PLANCK-GESELLSCHAFT, MÜNCHEN

896 Views